

Workshop ESSCIRC

Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit-SAR-ADC

17. September 2010

Christof Dohmen

Outline

- → System Overview
- → Analog-Front-End
 - Chopper-Amplifier
 - Anti-Aliasing-Filter
 - Measurement Results
- → Charge Scaling SAR-ADC
 - ADC-Concept
 - Measurement Results
- → System Summary

Data Acquisition System Overview

Purpose: sensor frontend of the Ultrasponder-implant

Problems with biomedical signals:

- at very low frequencies 1/f noise dominates in amplifiers and overlays very small signals
- dc-offsets in amplifiers at very high gain distort or even destroy these signals

Solution: use a chopping amplifier

Realization of Chopper-Elements

ULTRAsponder Sep-10 © IMST GmbH - All rights reserved

Active LP- Filter – Fully Differential Multiple Feedback

Anti-Aliasing-Low-Pass-Filter Requirements

- 20dB gain in pass-region
- cut-off-frequency $f_{C,3dB}$ =70Hz => large external passive elements required
- filter suppression of 72.24dB at least required for 12 bit resolution in ADC

Anti-Aliasing-Filter: frequency plot from lab-results

Verification of parameters by measurement

- 20dB Gain in pass-region
- cut-off-frequency $f_{C,3dB}$ =70Hz
- cut-off-steepness 80dB/decade due to 4th filter order

ext. filter-elements on testboard

Chopping in time domain: lab results

54.0mV

15.2%

Ch3

94.88mV

Ampl(03)

Pk-Pk(C1)

-DIviCve(C3)4

Unstable histogram

Low resolution

mpl(01)

Pk-Pk(C3)

Freq(C3)

Ch1 Ch3

56.8mV

96.15mV

-1.04kHz

20.0mV Ω Bw

20.0mV Ω Bw

Linstable

Unstable histogram

Outline

- → System Overview
- → Analog-Front-End
 - Chopper-Amplifier
 - Anti-Aliasing-Filter
 - Measurement Results

\rightarrow Charge Scaling SAR-ADC

- ADC-Concept
- Measurement Results
- → System Summary

Overview of ADC-Concepts: Speed vs Resolution

Targeted: 12bit, f_S<50kS/s, V_{ref}=1.5V, f_{clk}=1MHz

Successive-Approximation-Register-ADC (SAR)

General SAR-structure

SAR-ADC with Charge Scaling DAC (1)

12

SAR-ADC with Charge Scaling DAC (2)

Design Improvements of the ADC for Ultrasponder

Design of the Comparator with Autozero

 single-stage preamplifiers increase V_{in}-sensitivity to 180uV (= V_{LSB}/2) @ settling-time t_{settle} < 500ns (maximum system-clock f_{clk}=1MHz)

<u>A 4-step autozero-cycle is preceding every conversion:</u>

ULTRAsponder Sep-10 © IMST GmbH - All rights reserved

16

1. Each preamp is shorted at its input. A short closing of the purge-switches discharges the autozero-capacitors

ider

ultrasp

2/3/4. On opening the AZ-switches from back to front the autozerocapacitors store offset from preamplifiers

ADC Lab-Results: Time-Domain-Signal

Test signal for ADC-performance-check:

- clean sine (negligible distortion & noise)
- perfect full-scale amplitude

17

• long conversion period to acquire enough data

 \rightarrow time domain signal (blue) with Sine Wave Fitting (red) from 512kSamples, f_S=20kS/s

ADC Lab-Results: FFT

Performance parameters can be calculated from the FFT of the conversion data:

ADC Lab-Results: Differential Nonlinearity (DNL)

ULTRAsponder Sep-10 © IMST GmbH - All rights reserved

19

ADC Lab-Results: Integral Nonlinearity (INL)

- \rightarrow INL: deviation from the ideal step value
- → here: 6 LSBs in either direction → costs 4 bits of resolution → possibly worse than in reality due to measurement errors

ADC-Performance Comparison: Figure of Merit (FOM)

Summary: Ultrasponder Data-Acquisition-Chip

Performance summary

	Parameter	Symbol	Value	Notes
SYSTEM	supply voltage	AVDD,	1.5V	±5%
		DVDD		
	temperature range	Т	27° to 42°C	body temperature
	system clock frequency	$\mathbf{f}_{\mathrm{clk}}$	max. 1MHz	from crystal (100ppm)
	common mode DC level	V_{CM}	750mV	VCM- generation on chip
	total power consumption	P _{tot}	· 400uW	
AFE	gain	A _{AFE}	60dB	using chopping technique
	input frequency range	f _{in afe}	DC-70Hz	
	chopper frequency	$\mathbf{f}_{\mathbf{CH}}$	4kHz-6kHz	
	input voltage range	V _{IN.PP}	luV-lmV	
	anti aliasing low pass corner	$f_{c,AALP}$	70Hz	4 th order active, 20dB gain, external
	frequency			passive elements
ADC	resolution	ENOB	8-9 bit	targeted 12 bit
	ADC input voltage range	$V_{IN,ADC}$	0.1 to +1.4V	positive differential input voltage
	input frequency range	$f_{IN,ADC}$	0.1Hz-27.5kHz	ADC in stand-alone mode
	max. sampling frequency	$\mathbf{f}_{\mathbf{S},\mathbf{max}}$	55.5kS/s	NOTE: $\mathbf{f}_{in,max}$ $\mathbf{f}_{s}/2$
	power consumption of ADC only	P_{ADC}	28uW	FOM: 2.56e-13 J/conv-step
digital	Number of steps for SAR-control	N _{sar}	18	autozero, bit-cycling, data-ready
	FIFO size	N _{fifo}	100 words	1 word = 12bit
	SPI-clock	\tilde{f}_{SPI}	16kHz-10MHz	slave-mode

23

